阿尔茨海默病神经影像行动计划(Alzheimer's disease neuroimaging initiative,ADNI)旨在研究为阿尔茨海默病治疗试验提供信息的脑成像和生物学标志物。通过ADNI-1、ADNI-GO、ADNI-2和ADNI-3等连续阶段,对淀粉样蛋白和tau表型分析及改进神经影像学方法,已成功实现数据标准化分析和测量,并对全球无限制公开共享数据。本文对ADNI进展情况及ADNI发展历程进行了总结,对美国及WW-ADNI及相关国家ADNI概况进行了总结与述评,并对开展ADNI-4进行了展望。
The Alzheimer's disease neuroimaging Initiative (ADNI) aims to study brain imaging and biomarkers that provide information for Alzheimer's disease treatment trials. Through the continuous stages of ADNI-1, ADNI-go, ADNI-2 and ADNI-3, the phenotypic analysis of amyloid and tau and the improvement of neuroimaging methods have successfully realized the standardized analysis and measurement of data, and the unrestricted public sharing of data around the world. This paper reviews ADNI research as follows.
表1 ADNI-3参与者基本情况、生物标志物及相关量表评分结果(�¯±�,%)Tab.1 ADNI-3 participants demographics, biomarkers, and assessment result s (�¯±�,%) |
总体 | 正常对照 | MCI | AD | Unknown | 总计 | |
---|---|---|---|---|---|---|
(n=509) | (n=288) | (n=109) | (n=63) | (n=969) | ||
滚动增加 | 969 | 213 (42%) | 126 (44%) | 50 (46%) | 51 (81%) | 440 (45%) |
年龄 | 969 | 73.7 (7.6) | 75.2 (8.0) | 77.6 (8.8) | 78.3 (8.8) | 74.9 (8.1) |
载体蛋白e4+ | 762 | 142 (32%) | 76 (39%) | 40 (59%) | 18 (35%) | 276 (36%) |
性别(女) | 969 | 300 (59%) | 119 (41%) | 48 (44%) | 31 (49%) | 498 (51%) |
教育年限 | 969 | 16.8 (2.3) | 16.2 (2.6) | 15.7 (2.5) | 16.3 (2.6) | 16.5 (2.5) |
淀粉样蛋白 | 785 | 141 (31%) | 111 (47%) | 73 (85%) | 1 (33%) | 326 (42%) |
少数民族 | 969 | 82 (16%) | 37 (13%) | 11 (10%) | 9 (14%) | 139 (14%) |
MMSE | 922 | 29.1 (1.2) | 27.8 (2.1) | 27.8 (2.1) | 28.3 (2.6) | 27.8 (3.1) |
FCI | 839 | 68.1 (6.0) | 60.4 (12.1) | 39.7 (18.9) | 64.7 (8.1) | 63.0 (12.9) |
CDR-SB | 944 | 0.073 (0.257) | 1.484 (1.218) | 5.743 (3.290) | 3.409 (5.683) | 1.309 (2.550) |
ADAS-cog13 | 908 | 12.7 (4.3) | 19.3 (6.5) | 34.4 (8.5) | 15.0 (8.8) | 17.3 (8.9) |
Note: MMSE: short mental scale; FCI: financial capacity tool; CDR-SB: dementia severity rating scale; CDR-SB: clinical dementia rating scale; ADAS- cog13: Alzheimer's disease assessment scale - cognitive subscale |
[1] | Weiner MW, Veitch DP, Aisen PS, et al. The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception[J]. Alzheimers Dement, 2013, 9(5): 10.1016/j.jalz.2013.05.1769. |
[2] | Mueller SG, Weiner MW, Thal LJ, et al. The Alzheimer's disease neuroimaging initiative[J]. Neuroimaging Clin N Am, 2005, 15(4):869-877. |
[3] | Mueller SG, Weiner MW, Thal LJ, et al. Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative[J]. Cognition Dement, 2006, 1(1):55-66. |
[4] | Weiner MW, Aisen PS, Jack CR, et al. The Alzheimer's disease neuroimaging initiative: progress report and future plans[J]. Alzheimers Dement, 2010, 6(3):202-211. |
[5] | Jack CR Jr, Bernstein MA, Borowski BJ, et al. Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative[J]. Alzheimers Dement, 2010, 6(3):212-220. |
[6] | Liu E, Luthman J, Cedarbaum JM, et al. Perspective: the Alzheimer's disease neuroimaging initiative and the role and contributions of the private partner scientific board (PPSB)[J]. Alzheimers Dement, 2015, 11(7):840-849. |
[7] | Schmidt ME, Chiao P, Klein G, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: points to consider and recommendations for controlling variability in longitudinal data[J]. Alzheimers Demen, 2015, 11(9):1050-1068. |
[8] | Tosun D, Landau S, Aisen PS, et al. Association between tau deposition and antecedent amyloid-β accumulation rates in normal and early symptomatic individuals[J]. Brain, 2017, 140(5):1499-1512. |
[9] | Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4):535-562. |
[10] | Guo T, Korman D, Baker SL, et al. Longitudinal cognitive and biomarker measurements support a unidirectional pathway in Alzheimer's disease pathophysiology[J]. Biol Psychiatry, 2021, 89(8):786-794. |
[11] | Jack CR Jr, Barnes J, Bernstein MA, et al. Magnetic resonance imaging in Alzheimer's neuroimaging initiative 2[J]. Alzheimers Dement, 2015, 11(7):740-756. |
[12] | Sten JL, Medland SE, Arias Vasquez A, et al. Identification of common variants associated with human hippocampal and intracranial volumes[J]. Nat Genet, 2012, 44(5):552-561. |
[13] | Johnson WE, Li C, Rabinovic A, et al. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics, 2007, 8(1):118-127. 本文引用 [2] 摘要 |
[14] | Moyer D, Ver Steeg G, Tax Chantal MW, et al. Scanner invariant representations for diffusion MRI harmonization[J]. Magn Reson Med, 2020, 84(4):2174-2189. |
[15] | Korecka M, Figurski MJ, Landau SM, et al. Analytical and clinical performance of amyloid-beta peptides measurements in CSF of ADNIGO/2 participants by an LC-MS/MS reference method[J]. Clin Chem, 2020, 66(4):587-597. |
[16] | Spellman DS, Wildsmith KR, Honigberg LA, et al. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer's disease neuroimaging initiative (ADNI) CSF[J]. Proteomics Clin Appl, 2015, 9(7-8):715-731. |
[17] | O'Bryant S, Gupta V, Henriksen K, et al. Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research[J]. Alzheimers Dement, 2015, 11(5):549-560. 本文引用 [1] 摘要 |
[18] | Libiger O, Shaw LM, Watson MH, et al. Longitudinal CSF proteomics identifies NPTX2 as a prognostic biomarker of Alzheimer's disease[J]. Alzheimers Dement, 2021, 17(12):1976-1987. 本文引用 [1] 摘要 |
[19] | Ewers M, Biechele G, Suárez-Calvet M, et al. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation[J]. EMBO Mol Med, 2020, 12(9):e12308. |
[20] | ortelius E, Zetterberg H, Skillbäck T, et al. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer's disease[J]. Brain, 2015, 138( 11):3373-3385. |
[21] | Apostolova LG, Risacher SL, Duran T, et al. Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol, 2018, 75(3):328-341. 本文引用 [1] 摘要 |
[22] | Raghavan NS, Dumitrescu L, Mormino E, et al. Association between common variants in RBFOX1, an RNA-binding protein, and brain amyloidosis in early and preclinical Alzheimer disease[J]. JAMA Neurol, 2020, 77(10):1288-1298. |
[23] | Hibar DP, Adams Hieab HH, Jahanshad N, et al. Novel genetic loci associated with hippocampal volume[J]. Nat Commun, 2017, 8(12):13624. |
[24] | Nho K, Nudelman K, Allen M, et al. Novel genetic loci associated with hippocampal volume[J]. Nat Commun, 2017, 8:13624. 10.1038/ncomms13624. |
[25] | Vasanthakumar A, Davis JW, Idler K, et al. Harnessing peripheral DNA methylation differences in the Alzheimer's disease neuroimaging initiative (ADNI) to reveal novel biomarkers of disease[J]. Clin Epigenetics, 2020, 12(1):84. 本文引用 [1] 摘要 |
[26] | Arnold M, Nho K, Kueider-Paisley A, et al. Sex and APOE ε4 genotype modify the Alzheimer's disease serum metabolome[J]. Nat Commun, 2020, 11(1):1148. |
[27] | Florencia Clarens M, Crivelli L, Calandri I, et al. Neuropsychological profile of Alzheimer's disease based on amyloid biomarker findings results from a South American cohort[J]. Appl Neuropsychol Adult, 2022, 29(3):345-350 |
[28] | Chrem Méndez P, Calandri I, Nahas F, et al. Argentina‐Alzheimer's disease neuroimaging initiative (Arg-ADNI): neuropsychological evolution profile after one‐year follow up[J]. Arq Neuropsiquiatr, 2018, 76(4):231-240. |
[29] | Harris P, Fernandez Suarez M, Surace EI, et al. Cognitive reserve and Aβ1-42 in mild cognitive impairment (Argentina-Alzheimer's disease neuroimaging initiative)[J]. Neuropsychiatr Dis Treat, 2015, 11:2599-2604. |
[30] | Allegri RF, Pertierra L, Cohen G, et al. A biological classification for Alzheimer's disease - Amyloid, tau and neurodegeneration (A/T/N): results from the Argentine-Alzheimer's disease neuroimaging initiative[J]. Int Psychogeriatr, 2019, 31(12):1837-1838. |
[31] | Chrem Méndez P, Gabriela C, Maria Julieta R, et al. Concordance between 11C-PIB-PET and clinical diagnosis in a memory clinic[J]. Am J Alzheimers Dis Other Demen, 2015, 30(6):599-606. |
[32] | Julieta Russo M, Cohen G, et al.Chrem Méndez P, Predicting episodic memory performance using different biomarkers: results from Argentina-Alzheimer's disease neuroimaging initiative[J]. Neuropsychiatr Dis Treat, 2016, 12:2199-2206. |
[33] | Zukotynski K, Gaudet V, Kuo PH, et al. The use of random forests to identify brain regions on amyloid and FDG PET associated with MOCA score[J]. Clin Nucl Med, 2020, 45(6):427-433. 本文引用 [2] 摘要 |
[34] | Zukotynski K, Gaudet V, Kua PH, et al. The use of random forests to classify amyloid brain PET[J]. Clin Nucl Med, 2019, 44(10):784-788. 本文引用 [1] 摘要 |
[35] | Shan Y, Wang Z, Zhao Z, et al. An fMRI study of neuronal specificity in acupuncture: the multiacupoint siguan and its sham point[J]. Evid Based Complement Alternat Med, 2014, 10(11):103491. |
[36] | Wang Z, Nie B, Li D, et al. Effect of acupuncture in mild cognitive impairment and Alzheimer's disease: a functional MRI study[J]. PLoS One, 2012, 7(8):e42730. |
[37] | Liang P, Wang Z, Qian T, et al. Acupuncture stimulation of Taichong (Liv3) and Hegu (LI4) modulates the default mode network activity in Alzheimer's disease[J]. Am J Alzheimers Dis Other Demen, 2014, 29(8):739-748. |
[38] | Wang Z, Liang P, Zhao Z, et al. Acupuncture modulates resting state hippocampal functional connectivity in Alzheimer's disease[J]. PLoS One, 2014, 9(3):e91160. |
[39] | Zheng W, Su Z, Liu X, et al. Zheng W, Su Z, Liu X, et al. Modulation of functional activity and connectivity by acupuncture in patients with Alzheimer's disease as measured by resting-state fMRI[J]. PLoS One, 2018, 13(5):e0196933. |
[40] | Li H, Wang Z, Yu H, et al. The long-term effects of acupuncture on hippocampal functional connectivity in amci with hippocampal atrophy: a randomized longitudinal fMRI study[J]. Neural Plasticity, 2020, 10(11):6389368. |
[41] | Iwatsubo T, Iwata A, Suzuki K, et al. Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies: harmonization for international trials[J]. Alzheimers Dement, 2018, 14(8):1077-1087. 本文引用 [1] 摘要 |
[42] | Suzuki K, Hirakawa A, Ihara R, et al. Effect of apolipoprotein E ε4 allele on the progression of cognitive decline in the early stage of Alzheimer's disease[J]. Alzheimers Dement (N Y), 2020, 6(1):e12007. |
[43] | Sato K, Ihara R, Suzuki K, et al. Predicting amyloid risk by machine learning algorithms based on the A4 screen data: application to the Japanese Trial-Ready Cohort study[J]. Alzheimers Dement: Translat Res Clin Interven, 2021, 7(1):e12135. |
[44] | Huang KL, Lin KJ, Ho MY, et al. Amyloid deposition after cerebral hypoperfusion: evidenced on [(18)F]AV-45 positron emission tomography[J]. J Neurol Sci, 2012, 319(1-2):124-129. |
[45] | Yang ST, Hsiao IT, Hsieh CJ, et al. Accumulation of amyloid in cognitive impairment after mild traumatic brain injury[J]. J Neurol Sci, 2015, 349(1-2):99-104. |
[46] | Huang CY, Hsiao IT, Lin KJ, et al. Amyloid PET pattern with dementia and amyloid angiopathy in Taiwan familial AD with D678H APP mutation[J]. J Neurol Sci, 2019, 398:107-116. |
[47] | Wu KY, Lin KJ, Chen CH, et al. Diversity of neurodegenerative pathophysiology in nondemented patients with major depressive disorder: evidence of cerebral amyloidosis and hippocampal atrophy[J]. Brain Behav, 2018, 8(7):e01016. |
[48] | Lin SY, Lin KJ, Lin PC, et al. Plasma amyloid assay as a pre-screening tool for amyloid positron emission tomography imaging in early stage Alzheimer's disease[J]. Alzheimers Res Ther, 2019, 11(1):111. |
[49] | Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET[J]. Alzheimer's Dement, 2015, 11(1):1-15. |
[50] | van der Kall LM, Truong T, Burnham SC, et al. Association of β-Amyloid level, clinical progression and longitudinal cognitive change in normal older individuals[J]. Neurology, 2021, 96(5):e662-e670. |
[51] | Villemagne V, Doré V, Okamura N, et al. To tau or to MAO-B? Most of the 18F-THK5351 signal is blocked by selegiline[J]. J Nucl Med, 2018, 59(1):1644. |
[52] | Frisoni GB, Henneman WJP, Weiner MW, et al, The pilot European Alzheimer’s Disease Neuroimaging Initiative (E-ADNI) of the European Alzheimer’s Disease Consortium[J]. Alzheimers Dement, 2008, 4(4): 255-264. |
[53] | Weber CJ, Carrillo MC, Jagust W, et al. The Worldwide Alzheimer's Disease Neuroimaging Initiative: ADNI-3 updates and global perspectives[J]. Alzheimers Dement (NY), 2021, 7(1): e12226. |