目的: 报道一例疑似非阿尔茨海默病病理生理改变(SNAP)的病例,以提高对该疾病的认识。方法: 分析SNAP的临床特征、脑脊液病理生物标志物和影像学改变的特点。结果: 患者为中年男性,临床表现为认知损害,神经心理量表评估提示中度认知功能损害,脑脊液中Aβ42水平和Aβ42/Aβ40比值均在正常范围,但是p-Tau181的水平显著增高,MRI影像示双侧海马明显萎缩。结论: 临床诊断支持SNAP。
Objective: Reported a case of suspected non-Alzheimer's disease pathophysiology (SNAP) to improve our understanding of the disease. Methods: Analyzed the clinical features, cerebrospinal fluid pathological biomarkers and imaging changes of SNAP, and reviewed relevant literature. Results: The patient was a middle-aged man with cognitive impairment,his neuropsychological scale assessment suggested moderate cognitive impairment, the level of Aβ42 and Aβ42/Aβ40 ratios in cerebrospinal fluid were all within the normal range, but the level of p-Tau181 was significantly increased, and MRI images showed significant bilateral hippocampus atrophy. Conclusion: The clinical diagnosis supported SNAP.
疑似非阿尔茨海默病病理生理改变(SNAP) / 阿尔茨海默病(AD) / β-淀粉样蛋白(Aβ) / Tau蛋白
Suspected non-Alzheimer's disease pathophysiology (SNAP) / Alzheimer's disease (AD) / β-Amyloid (Aβ) / Microtubule-associated protein Tau
图1 SNAP患者颅脑MRI平扫A、B) FLAIR轴位、C) T2WI轴位:双侧海马萎缩: D. E) FLAIR轴位、F) T2WI轴位: 双侧大脑半球皮层下、侧脑室旁脑白质多发脱髓鞘改变。Fig.1. Brain MRI scan in SNAP patient A. B) FLAIR axis. C) T2WI axis: Bilateral hippocampus atrophy: D、E) FLAIR axds. F) T2WI axis:Multiple demyelinating changes in white matter of bilateral cerebral hemisphere subcortical and lateral ventrice. |
[1] | Scheltens P, de Strooper B, Kivipelto M, et al. Alzheimer's disease[J]. Lancet, 2021, 397:1577-1590. 本文引用 [1] 摘要 |
[2] | Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4):535-562. 本文引用 [2] 摘要 |
[3] | Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on AgingAlzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3):257- 262. |
[4] | Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6):614-629. 本文引用 [1] 摘要 |
[5] | Wisse L, de Flores R, Xie L, et al. Pathological drivers of neurodegeneration in suspected non-Alzheimer's disease pathophysiology[J]. Alzheimers Res Ther, 2021, 13(1):100. 本文引用 [3] 摘要 |
[6] | Li Z, Li K, Luo X, et al. Distinct brain functional impairment patterns between suspected non-Alzheimer Disease pathophysiology and Alzheimer's disease: a study combining static and dynamic functional magnetic resonance imaging[J]. Front Aging Neurosci, 2020, 12:550664. |
[7] | Burnham SC, Bourgeat P, Doré V, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer's disease pathophysiology (SNAP) or Alzheimer's disease pathology: a longitudinal study[J]. Lancet Neurol, 2016, 15(10):1044-53. 本文引用 [3] 摘要 |
[8] | Gordon BA, Blazey T, Su Y, et al. Longitudinal β-Amyloid deposition and hippocampal volume in preclinical Alzheimer disease and suspected non-Alzheimer disease pathophysiology[J]. JAMA Neurol, 2016, 73(10):1192-1200. 本文引用 [2] 摘要 |
[9] | Schreiber S, Schreiber F, Lockhart SN, et al. Alzheimer disease signature neurodegeneration and APOE genotype in mild cognitive impairment with suspected non-Alzheimer disease pathophysiology[J]. JAMA Neurol, 2017, 74(6):650-659. 本文引用 [2] 摘要 |
[10] | Hohman TJ, Dumitrescu L, Oksol A, et al. APOE allele frequencies in suspected non-amyloid pathophysiology (SNAP) and the prodromal stages of Alzheimer's Disease[J]. PLoS One, 2017, 12(11):e0188501. |
[11] | Dani M, Brooks DJ, Edison P, et al. Suspected non-Alzheimer's pathology: is it non-Alzheimer's or non-amyloid?[J]. Ageing Res Rev, 2017, 36:20-31. 本文引用 [1] 摘要 |
[12] | Hayashi H, Kobayashi R, Kawakatsu S, et al. Comparison of the decreases in regional cerebral blood flow in the posterior cingulate cortex, precuneus, and parietal lobe between suspected non-Alzheimer's disease pathophysiology and Alzheimer's disease[J]. Psychogeriatrics, 2021, 21(5):716-721. |
[13] | Chiaravalloti A, Barbagallo G, Martorana A, et al. Brain metabolic patterns in patients with suspected non-Alzheimer's pathophysiology (SNAP) and Alzheimer's disease (AD): is [(18)F] FDG a specific biomarker in these patients?[J]. Eur J Nucl Med Mol Imaging, 2019, 46(9):1796-1805. |
[14] | Wong B, Yong TT, Lim L, et al. Medial temporal atrophy in amyloid-negative amnestic type dementia is associated with high cerebral white matter hyperintensity[J]. J Alzheimers Dis, 2019, 70(1):99-106. 本文引用 [1] 摘要 |
[15] | Prestia A, Caroli A, van der Flier WM, et al. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease[J]. Neurology, 2013, 80(11):1048-1056. 本文引用 [1] 摘要 |
[16] | Caroli A, Prestia A, Galluzzi S, et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): prediction of progression[J]. Neurology, 2015, 84(5):508-515. 本文引用 [3] 摘要 |
[17] | Jack CR Jr. PART and SNAP[J]. Acta Neuropathol, 2014, 128(6):773-776. |
[18] | Respondek G, Stamelou M, Kurz C, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases[J]. Mov Disord, 2014, 29(14):1758-66. |
[19] | 中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会帕金森病及运动障碍专业委员会. 皮质基底节变性诊断标准及治疗中国专家共识[J]. 中国神经免疫学和神经病学杂志, 2019, 26(4):240-245. |
[20] | Tagliapietra M, Frasson E, Cardellini D, et al. Hypothalamic-bulbar MRI hyperintensity in anti-IgLON5 disease with serum-restricted antibodies: a case report and systematic review of literature[J]. J Alzheimers Dis, 2021, 79(2):683-691. 本文引用 [1] 摘要 |
[21] | Simabukuro MM, Sabater L, Adoni T, et al. Sleep disorder, chorea, and dementia associated with IgLON5 antibodies[J]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(4):e136. |
[22] | 王小倩, 韩菊萍, 黄亚锦, 等. 抗IgLON5抗体相关脑病研究进展[J]. 中国神经精神疾病杂志, 2021, 47(11):681-685. |
[23] | 中国免疫学会神经免疫分会, 中华医学会神经病学分会神经免疫学组. 多发性硬化诊断和治疗中国专家共识(2018版)[J]. 中国神经免疫学和神经病学杂志, 2018, 25(6):387-394. |
[24] | Hohman TJ, Logan D, Amy O, et al. APOE allele frequencies in suspected non-amyloid pathophysiology (SNAP) and the prodromal stages of Alzheimer's Disease[J]. Plos One, 2017, 12(11):e0188501. |
[25] | Dickerson BC, Wolk DA. Alzheimer's disease neuroimaging initiative. biomarker-based prediction of progression in MCI: comparison of AD signature and hippocampal volume with spinal fluid amyloid-βand tau[J]. Front Aging Neurosci, 2013, 5:55. 本文引用 [1] 摘要 |
[26] | Stage E, Svaldi DO, Phillips M, et al. [18F]-AV-1451 binding profile in early and late-onset Alzheimer’s disease and suspected non- Alzheimer pathophysiology[J]. Alzheimer Dem, 2018, 14(7):1057-1058. |
[27] | 余雪君, 刘欣艳, 李英梅, 等. 多奈哌齐对阿尔茨海默病患者外周血Aβ1-42和Tau蛋白浓度的影响[J]. 老年医学与保健, 2017, 23(2):102-104. |
[28] | Yoshiyama Y, Kojima A, Ishikawa C, et al. Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model[J]. J Alzheimers Dis, 2010, 22(1):295-306. 本文引用 [1] 摘要 |
[29] | Zeng K, Li M, Hu J, et al. Ginkgo biloba extract EGb761 attenuates hyperhomocysteinemia-induced AD like tau hyperphosphorylation and cognitive impairment in rats[J]. Curr Alzheimer Res, 2018, 15(1):89-99. 本文引用 [1] 摘要 |
[30] | Qin Y, Zhang Y, Tomic I, et al. Ginkgo biloba extract EGb 761 and its specific components elicit protective protein clearance through the autophagy-lysosomal pathway in tau-transgenic mice and cultured neurons[J]. J Alzheimers Dis, 2018, 65(1):243-263. 本文引用 [1] 摘要 |